Identification and characterization of Clostridium perfringens beta toxin variants with differing trypsin sensitivity and in vitro cytotoxicity activity.
نویسندگان
چکیده
By producing toxins, Clostridium perfringens causes devastating diseases of both humans and animals. C. perfringens beta toxin (CPB) is the major virulence determinant for type C infections and is also implicated in type B infections, but little is known about the CPB structure-function relationship. Amino acid sequence comparisons of the CPBs made by 8 randomly selected isolates identified two natural variant toxins with four conserved amino acid changes, including a switch of E to K at position 168 (E168K) that introduces a potential trypsin cleavage site into the CPB protein of strain JGS1076. To investigate whether this potential trypsin cleavage site affects sensitivity to trypsin, a primary host defense against this toxin, the two CPB variants were assayed for their trypsin sensitivity. The results demonstrated a significant difference in trypsin sensitivity, which was linked to the E168K switch by using site-directed recombinant CPB (rCPB) mutants. The natural CPB variants also displayed significant differences in their cytotoxicity to human endothelial cells. This cytotoxicity difference was mainly attributable to increased host cell binding rather than the ability to oligomerize or form functional pores. Using rCPB site-directed mutants, differences in cytotoxicity and host cell binding were linked to an A300V amino acid substitution in the strain JGS1076 CPB variant that possessed more cytotoxic activity. Mapping of sequence variations on a CPB structure modeled using related toxins suggests that the E168K substitution is surface localized and so can interact with trypsin and that the A300V substitution is located in a putative binding domain of the CPB toxin.
منابع مشابه
Identification of enterototxin harboring gene among Clostridium perfringens isolates with different toxin types in Iran
Background: Clostridium perfringens is known as the most widely distributed pathogenic microorganism in nature. It is an extremely important pathogen of human and domestic animals. In a commonly used classification scheme, C. perfringens is divided into five toxinotypes (A to E) based on the production of four major toxins (alpha, beta, epsilon, and iota). Enterotoxin is not usually used for C....
متن کاملMolecular typing of toxigenic Clostridum perfringens isolated from sheep in Iran
In this research a molecular method based on polymerase chain reaction for typing of Clostridium perfringens was developed and toxin genotypes of 64 isolates from sheep and goats in Iran were determined. The PCR assays were developed for detection of alpha (cpa), beta (cpb) and epsilon (etx) toxin genes, allowing classification of the isolates into genotypes A B, C and D. The field isolates ...
متن کاملIn silico fusion of epsilon and beta toxin genes of Clostridium perfringens types D and B
Fusion protein technology represents the strategy to achieve rapid, efficient, and cost-effective proteinexpression. Epsilon and Beta toxins are the most potent Clostridial toxins and cause disease in animals.This study describes in silico fusion of Clostridium perfringens types D and B epsilon and beta toxin genesthat was used for cloning in E.coli. The etx and cpb genes were...
متن کاملOccurrence of Beta2 toxigenic Clostridium perfringens isolates with different toxin types in Iran
Clostridium perfringens is an important cause of enteric diseases in both human and animals. The bacteria produce several toxins which play key roles in the pathogenesis of diseases and are classified into five toxin types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In this study a single PCR assay was developed and used for detection of cpb2 gene to id...
متن کاملMolecular Cloning of Clostridium Perfringens type B Vaccine Strain Beta Toxin Gene in E. coli
Clostridium perfringens is a gram-positive, obligate anaerobic bacterium, which is widely distributed in the environment. C. perfringens is subdivided to 5 groups (types A to E), based on its four major toxin (alpha, beta, epsilon and iota). C. perfringens type B beta toxin causes inflammation and bloody necrotic enteritis. Type B related enterotoxaemia is a major problem of veterinary sciences...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2015